
Prep
rin

t

An Approach towards Secure Programming in

Undergraduate Computing Curricula

Full Paper

SACLA 2019

© The authors/SACLA

Sifiso Bangani1 [0000-0001-9550-3185], Lynn Futcher2 [0000-0003-0406-8718], Johan Van

Niekerk3,4[000-0003-1739-4563]

1,2,3 Nelson Mandela University, Port Elizabeth, South Africa

{s214098389, Lynn.Futcher, Johan.VanNiekerk}@mandela.ac.za
4 Noroff University College, Norway

johan.vanniekerk@noroff.no

Abstract. The security aspect of software applications is considered as the im-

portant aspect that can reflect the ability of a system to prevent data exposures

and loss of information. For businesses that rely on software solutions to keep

operations running, a failure of a software solution can stop production, interrupt

processes, and may lead to data breaches and financial losses. Many software

developers are not competent in secure programming, resulting in risks that are

caused by vulnerabilities in the application code of software applications. Alt-

hough there are various techniques for writing secure code in the current body of

knowledge, these techniques are rarely fundamental components of a computing

curriculum, resulting in incompetent graduate software developers. This paper

argues that secure programming education needs to be included across computing

curricula. It proposes the incorporation of secure coding practices into undergrad-

uate computing curricula through a step-by-step approach. This approach in-

cludes the identification of application risks and secure coding practices as they

relate to each other and to fundamental programming concepts. It specifically

aims to improve the security of software applications developed in the .Net envi-

ronment.

Keywords: Computing Curricula, Software Security, Application Risks, Secure

Coding Practices, Fundamental Programming Concepts.

1 Introduction

As the world advances in technology by creating new and exciting software applica-

tions, so does the need to protect these software applications as their vulnerabilities and

associated risks also increase. Software applications have become integral to billions

of people as they use them on a day-to-day basis for working with top-secret enterprise

mailto:Johan.VanNiekerk%7d@mandela.ac.za

Prep
rin

t

2

intellectual property, sharing personal information, making bank transactions and shar-

ing pictures with family and friends [1].

Although software plays an important role on a day-to-day basis, it often has asso-

ciated risks as a result of vulnerabilities in the application layer [2]. The security aspect

of software applications is considered as the important aspect that can reflect the ability

of a system to prevent data exposures, and loss of information [3]. Failure to secure

software solutions can have more serious effects than just a temporary interruption to a

service. For businesses that rely on software solutions to keep operations running, a

failure of a software solution can stop production, interrupt processes, and may lead to

data breaches and financial losses. The human factor, which includes the programmer,

has a major impact on the success and failure of efforts to secure and protect the busi-

ness, services, and information [4]. According to [5], the main cause of software appli-

cation failure is human error in application programming, which happens during the

coding process.

Software developers are typically equipped with relevant programming knowledge

and skills to develop innovative software [6]. However, software developers are rarely

equipped with secure programming knowledge and skills from the undergraduate level

[7]. According to [8], “Students graduating from technical programs such as infor-

mation technology often do not have the attributes to fill the needs of industry”. Fun-

damental programming principles are often introduced to students without an under-

standing of their security implications, resulting in non-adherence to secure program-

ming [7]. For example, arrays and loops are introduced and explained without the men-

tion of buffer over flows that could occur due to lack of adherence to secure program-

ming.

The purpose of this research paper is to argue that secure programming education

needs to be included across computing curricula. Secure programming is an important

part of information security education, as [9] argue that relevant topics of information

security must be taught to some extent, in all of the modules of the main curriculum

from the first year of study, through to the final year of study. The contribution of this

paper is five-fold:

 Firstly, it identifies relevant application risks in the .Net environment.

 Secondly, it identifies secure coding practices to be taught to undergraduate compu-

ting students.

 Thirdly, it determines the basic programming concepts taught in the .Net environ-

ment in South African undergraduate computing curricula.

 Fourthly, it maps the basic programming concepts to relevant application risks

 Finally, it maps the relevant application risks to the identified secure coding prac-

tices.

These mappings help us understand how secure programming education can be in-

corporated into undergraduate computing curricula. By computing curricula, this re-

search refers to university courses that teach programming with a focus on Computer

Science and Information Technology.

Prep
rin

t

3

2 Related Literature

As much as new software technologies are needed and are being developed, the industry

increasingly demands software developers that possess relevant security knowledge,

skills and abilities [8]. Advancements in technology also increases the security risks

associated with those technologies, creating a gap of outdated knowledge and skills for

industry and academia [10]. According to [8], “although [cybersecurity] jobs are and

will be available, employers find it increasingly difficult to find qualified people to fill

them. Students graduating from technical programs such as information technology

often do not have the attributes to fill the needs of industry”. Software security is be-

coming every company’s norm and concern as a result of the rising trend of software

application vulnerabilities [1, 10, 11], which is the driving force behind the demand for

software developers with security knowledge and skills. This security skill demand re-

sults in industry’s need to hire developers experienced in secure programming. These

developers must have the knowledge, skills, and abilities of secure programming that

enables them to implement security-related solutions.

The security skills demand often forces companies to enroll their employees in se-

cure programming certifications such as, IBM’s Application Security Analyst Mastery

Award, and Microsoft’s Software Development Fundamentals course. These certifica-

tions are an attempt to make software developers competent in secure programming, as

they often lack the required knowledge [12, 13]. However, the knowledge acquired

through certifications is not sufficient to be productive in secure programming without

the necessary skills, as there should be a balance between knowledge and skills [14].

Secure programming certifications and training focus on two primary factors, namely:

awareness of a specific security threat, and having adequate training in the use of the

security counter-measure to such a threat [15]. However, these certifications and train-

ing do not guarantee a change in human behaviour [4, 15], as human behaviour requires

more than just awareness of a specific security threat. For software developers to be

competent in secure programming, they must be trained on the requisite skills of secure

programming at an undergraduate level.

Producing competent software developers should therefore begin in universities and

colleges where students are being educated in understanding and applying learned con-

cepts, and the ability to work in a team environment [10, 16]. Universities are respon-

sible for providing a hands-on teaching approach for undergraduate students, which

includes classroom lecturing, computer laboratory practical classes and experiments [2,

14]. The fundamentals of computing are introduced to learners at university level,

where learners are educated and guided through computer laboratory practical classes.

The learning outcomes from university curricula are used to show what the students

will know, and be able to demonstrate after the completion of that course [10], and are

key to the shift of focus in education from a paradigm concerned with providing in-

structions, to a paradigm of producing learning [17].

Various computing curricula guidelines such as the Association for Computing Ma-

chinery (ACM) state that, Information Assurance and Security (IAS) belong at an ad-

vanced level of a four year computing program, yet many students in three year com-

puting courses graduate and leave university before completing the fourth year of study

Prep
rin

t

4

[9]. Furthermore, [9] argues that “Therefore, for information security to become perva-

sive, relevant topics could be taught, to some extent, in all of the modules of the main

curriculum from first year through to the final year”. Programming is fundamental to

computing curricula. However, often not much attention is given to secure program-

ming. Therefore, students can only apply what they have been taught. The behaviour

of a student in a certain area such as secure programming can be improved by providing

students with the requisite knowledge [18]. This can be done through software security

education in computing at universities.

Software security is the idea implemented to protect software to ensure it functions

correctly under malicious attacks [19]. Furthermore, [19] states that “Software security

is about building secure software: designing software to be secure, making sure that

software is secure, and educating software developers, architects, and users about how

to build secure things”. Software security is not simply implemented by installing an

anti-virus software to a computer or electronic device, as hackers steal or get access to

top secret enterprise information, or even damage the behaviour of software applica-

tions. Hackers can damage software through embedding malicious software or scripts

in the code. Software applications without proper security built-in can be vulnerable to

various computer attacks such as Cross-Site Scripting, SQL Injections, Session Hijack-

ing, Cross-Site Request Forgery and Denial of Service attacks [2]. The only way to

avoid such attacks is by practicing good secure programming techniques [5, 20].

Secure programming is the manner of writing code to minimise software security

vulnerabilities, as many problems faced by users nowadays are caused by vulnerabili-

ties resulting from flaws in application code. There are various techniques for writing

secure code in the current body of knowledge [7, 21, 22]. Although these techniques

exist, they are rarely fundamental components of a computing curriculum, but rather

treated as secondary topics that are briefly discussed in programming courses [7]. To

maintain security in software applications, students must have the necessary skills and

knowledge. According to [23] “the ability to write secure code should be as fundamen-

tal to a university computer science undergraduate as basic literacy”. This research

proposes the explicit incorporation of secure programming practices into undergraduate

computing curricula. The following section briefly describes computing education in

the South African context.

3 Computing Education in the South African Context

Institutions of higher learning in South Africa are divided into public and private uni-

versities [24]. For the purposes of this research, the focus is on public universities.

South African public universities are divided into three categories namely: traditional

universities, universities of technology and comprehensive universities. The South Af-

rican public universities are overseen by the Department of Higher Education and

Training, which is responsible for post-school education and training.

South African universities offer three to four year degree qualifications depending

on the type of university [25]. Comprehensive universities and universities of technol-

ogy offer three year diploma qualifications, where a student can graduate and leave

Prep
rin

t

5

university with a diploma to join the workplace [9]. For a student in such universities

to obtain a degree, the student would be required to advance their diploma qualification

by completing their fourth year of study. The fourth year of study is considered to be

an advanced level, where students can be introduced to advanced topics [10]. In the

case of programming qualifications, the fourth year of study would typically include an

introduction to security and secure programming basics [9, 10]. Traditional universities

with three year degree qualification teach fundamental programming basics in the un-

dergraduate level. The fourth year of study in traditional universities is also considered

as an advanced level, where students are introduced to advanced computing topics.

South African universities offer semester courses and year courses. Semester courses

are usually carried out over a period of six months, and year courses are carried out

throughout the year [24]. Both semester and year courses in various universities offer

fundamentals of programming. However, secure coding practices are rarely explicitly

taught to undergraduate students, but are rather treated as secondary topics that are

briefly discussed in these programming courses [7]. Examples of such courses include:

Programming Fundamentals, Computing Fundamentals, Development Software, Ap-

plications Development, Mobile Computing, Technical Programming and Web Sys-

tems.

The focus in this research is on applications developed in the .Net environment, since

most South African universities teach programming in the .Net environment, with Mi-

crosoft promoting free product usage by university students. However, the approach for

incorporating secure coding practices into undergraduate computing curricula can be

used in other development environments and frameworks that are not .Net based.

4 Research Approach

A preliminary investigation and content analysis were conducted, to determine whether

South African universities incorporate secure programming in their undergraduate

computing curricula, in an effort to ensure that students will be competent in the secure

programming of software applications. The preliminary investigation was conducted

on South African universities through a thematic content analysis, by reviewing the

Prospectus and Learner and Lecturer Guides of various universities. Where relevant

themes and topics relating to secure programming were examined. The purpose of the

investigation was to determine whether secure programming is being included in the

teaching of programming concepts, as writing secure code is fundamental to an under-

graduate computing student [23]. A content analysis is typically conducted to make

replicable and valid inferences from texts and examining data [26, p. 18]. Therefore, in

the context of this research, the content analysis was used to examine various universi-

ties curricula documents and Learner and Lecturer Guides, in an effort to understand

the state of secure programming in the undergraduate level.

Fig. 1 represents the research process followed by this study which led to the step-

by-step approach for incorporating secure programming into undergraduate computing

curricula.

Prep
rin

t

6

Fig. 1. Research Process.

This research proposes a step-by-step approach for incorporating secure coding prac-

tices into programming modules:

 STEP 1: Identification of Relevant Application Risks which involves the identifica-

tion of relevant application risks in the .Net environment and are important for teach-

ing secure programming.

 STEP 2: Identification of Secure Coding Practices requires the identification of the

secure coding practices that should be taught to computing students as requisite

knowledge for secure programming.

 STEP 3: Identification of Basic Programming Concepts determines the basic pro-

gramming concepts typically taught to undergraduate students in the .Net environ-

ment.

 STEP 4: Mapping Application Risks to Programming Concepts in order to demon-

strate the need for teaching application risks along with programming concepts.

Prep
rin

t

7

 STEP 5: Mapping Basic Programming Concepts to Identified Secure Coding Prac-

tices in order to highlight the need for, and relevance of integrating secure coding

practices to programming concepts taught.

 STEP 6: Mapping Application Risks to Identified Secure Coding Practices in order

to show the relationship between application risks and secure coding practices to

highlight the importance of secure programming.

Each step is described in detail in the following sub-sections.

4.1 STEP 1: Identification of Relevant Application Risks (ARs)

An initial literature review was conducted to identify application risks that can affect

software applications developed in the .Net environment. The Open Web Application

Security Project (OWASP) was used as a source of software application security guid-

ance. OWASP is an international not-for-profit group that is dedicated to helping or-

ganisations develop, purchase, and maintain software applications [27]. OWASP is

known for providing free documentation for application risks and provides a Top 10

Application Risks document for awareness in web application security [8]. This docu-

ment represents a broad consensus about the most critical security risks to web appli-

cations [21]. Although the OWASP list of Top 10 Application Risks is mostly relevant

to web applications, it can also be used for other software applications during applica-

tion development, testing and maintenance. The examples provided in this paper relate

to web applications as they are often deemed the most vulnerable software applications.

 Table 1 shows the OWASP Top 10 Application Risks ordered according to their

severity, with an encoding identifier being AR for Application Risk, followed by its

position number in the list.

Table 1. OWASP Top 10 Application Risks 2017.

OWASP’s list of Top 10 Application Risks can be used in the development of other

software solutions that are not .Net based, to guide and test for well-known vulnerabil-

ities, as these application risks can affect most applications regardless of the develop-

ment environment. In the identification of these application risks, the SANS Top 25

Prep
rin

t

8

Programming Errors list [28] was used to compare the current application risks to well-

known programming errors, to determine the extent to which the errors could cause the

risks listed in OWASP’s list of Top 10 Application Risks. Some errors in the SANS

Top 25 Errors list are no longer critical, as there have been changes in the security of

development platforms and frameworks. This also resulted in the change in OWASP’s

list of the Top 10 Application Risks, causing cross-site scripting dropping from number

2 in the 2013 list to number 7 in 2017 [21, 28].

4.2 STEP 2: Identification of Secure Coding Practices (SPs)

To identify the secure coding practices, a literature review was conducted where prin-

ciples, techniques, and practices of secure programming from existing best practices

were reviewed. The literature review of fundamental secure coding practices was con-

ducted to understand what software developers need to be competent in with regards to

secure programming [16].

The Secure Coding Practices Checklist recommended by OWASP was used in the

identification of secure coding practices. The OWASP Secure Coding Practices Check-

list can be used to mitigate most common software application vulnerabilities [29]. This

checklist addresses the application risks listed in Table 1 and is used later in this paper

to map with application risks and basic programming concepts. Table 2 shows

OWASP’s Secure Coding Practices Checklist, with an encoding identifier being SP,

followed by its position number in the list.

Table 2. OWASP Secure Coding Practices Checklist.

In the ongoing investigation of secure coding practices to be taught to undergraduate

students, the concept map by the University of California Davis Secure Programming

Clinic [30], was reviewed for the identification and classification of programming prac-

tices. The identification and classification of the secure coding practices was verified

by the OWASP Secure Coding Practices Checklist [29]. The verification was done to

Prep
rin

t

9

test for the validity of the guidelines and principles in the current secure programming

clinic.

4.3 STEP 3: Identification of Basic Programming Concepts (PCs)

Having identified the secure coding practices, the globally published curricula guide-

lines for undergraduate computing programs were reviewed, to determine the extent to

which secure programming should be addressed in Computer Science (CS) and Infor-

mation Technology (IT) qualifications. The focus was on the ACM curricula docu-

ments, as the ACM tailors curricula recommendations to the rapidly changing land-

scape of computer technology. Although the ACM curricula guidelines mention secu-

rity as being part of computing curricula, the guideline documents for CS and IT do not

have adequate guidance on how secure programming can be taught to enable a graduate

software developer to be competent in secure programming. The key to educating and

training software developers is typically in the Prospectus and Learner and Lecturer

Guides pertaining to each university [10, 14].

Table 3. Basic Programming Concepts for Beginners in the .Net Environment.

To understand the state of programming in the undergraduate level, a thematic content

analysis was conducted on undergraduate computing curricula in South Africa. The

content analysis was conducted to determine basic programming concepts taught in the

.Net environment, across different public universities in South Africa. The Prospectus

and Learner and Lecturer Guides that are available on the universities websites were

used in understanding the state of programming in the undergraduate level.

Table 3 provides a list of basic programming concepts that are typically taught across

South African universities. The list does not provide the order in which the concepts

are taught, but it rather outlines the fundamentals of programming that are for beginners

Prep
rin

t

10

developing in the .Net environment. Each item in the list is given an encoding identifier

PC for programming concept, followed by its position number in the table.

4.4 STEP 4: Mapping Application Risks (ARs) to Basic Programming

Concepts (PCs)

After consolidating findings about what programming concepts should be included

when teaching secure programming in South African universities, the researcher cre-

ated mapping links of how application risks can be taught when teaching programming

concepts. Mapping links of how application risks must be taught along with program-

ming concepts were created by the researcher. The purpose of the mapping links is to

demonstrate the need for, and relevance of teaching application risks along with pro-

gramming concepts. The mapping links in the content analysis results were given an

impact value (I). I is based on how many times a Programming Concept (PC) was

linked to an Application Risk (AR) horizontally according to the Programming Concept

(PC), and a measure of how many times an Application Risk (AR) was linked to a

Programming Concept (PC) vertically according to the Application Risk (AR). I can

also be seen as a way of prioritising important links. Table 4 shows the mapping links

between the identified Programming Concepts and the OWASP Top 10 Application

Risks.

Table 4. Mapping of Basic Programming Concepts to OWASP Top 10 Application Risks.

The mapping of programming concepts to application risks shows the relationship that

the programming concept has directly to the application risk. A programming concept

can have a number of application risks associated with it, and an application risk can

occur due to poorly written programming concepts. A programming concept that links

with many application risks receives a high impact value (I), where an impact value of

Prep
rin

t

11

4 and above would mean that the link needs special attention. Therefore, lecturers of

programming courses could then prioritise the time taken for each link according to the

impact value, allowing them to spend more time teaching links with a high impact

value. For the purpose of this paper, the programming concepts with a high impact

value will be used to demonstrate the importance of considering application risks when

teaching programming.

The programming concept Error Handling (PC12) links to many application risks

and thus, it received a high impact value (I) of 6. Error handling is the last defense in a

software application when written code statements do not execute as expected [5, 29].

To educate students on how to program securely, the associated application risks must

be taught to students after the introduction of the programming concept. The introduc-

tion of these application risks should begin from the first year of study, and be taught

in parallel with programming concepts as they occur in the syllabus. In an attempt to

ensure that students adhere to secure programming and avoid these application risks,

students must implement a means that recovers from errors e.g. Try-catch [7].

Similarly, the programming concept Validation (PC13) received a high impact value

(I) of 6 which shows its importance to software applications. Applications without

proper validation of data can be vulnerable to various applications risks [21]. Students

must be encouraged to always use input validation to avoid the application risks such

as Injection (AR1) associated with Validation (PC13) in Table 4 [13]. Encouraging

students to do Validation (PC13) would require lecturers to examine the students’ ad-

herence through setting laboratory practicals that require input validation. Students

would be assessed and their work graded by reviewing the code they develop.

In Table 4, Injection (AR1) is the first in the list of OWASP Top 10 Application

Risks, which shows how critical this risk is to software applications [21]. This applica-

tion risk should be introduced and taught in parallel with the associated programming

concepts to avoid this risk from occurring. To avoid Injections (AR1), students must

be taught how they relate to each of the associated programming concepts (i.e. PC2,

PC6, PC8, PC10, PC12 and PC13).

4.5 STEP 5: Mapping Basic Programming Concepts (PCs) to Secure Coding

Practices (SPs)

After understanding the application risks that must be taught to undergraduate compu-

ting students, the researcher created mapping links of how secure coding practices can

be taught when teaching basic programming concepts. The purpose of the mapping

links is to demonstrate the need for, and relevance of integrating secure coding practices

to basic programming concepts taught to computing students. The mapping links iden-

tified in the content analysis results were given an impact value (I). I is based on how

many times a Programming Concept (PC) was linked to a Secure Coding Practice (SP)

horizontally according to the Programming Concept (PC), and a measure of how many

times a Secure Coding Practice (SP) was linked to a Programming Concept (PC) ver-

tically according to the Secure Coding Practice (SP). I can also be seen as a way of

prioritising important links that need special attention. Table 5 shows the mapping links

between Programming Concepts and the identified Secure Coding Practices.

Prep
rin

t

12

Table 5. Mapping of Basic Programming Concepts to Secure Coding Practices.

The mapping link between programming concepts and secure coding practices shows

a direct relationship between basic programming concepts, and secure coding practices.

A programming concept can have a number of secure coding practices that can be as-

sociated with it, and a secure coding practice can be applied to a number of program-

ming concepts. A programming concept that links with many secure coding practices

receives a high impact value (I), where an impact value of 4 and above would mean

that the link needs special attention.

Table 5 shows that the programming concepts Error Handling (PC12) and Valida-

tion (PC13) in this mapping prove to be the most important, as they received the highest

impact values (I) of 11 and 13 respectively. Similarly, in Table 4 PC12 and PC13

achieved high impact values of 6. Most application failures are as a result of lack of

Error Handling (PC12) and poor Validation (PC13). For Input Validation (SP1) to

work effectively, it is mostly used with Conditional Structures (PC2) to avoid errors

that might occur due to a lack of Error Handling (PC12) and Validation (PC13). When

Input Validation (SP1) is not properly implemented, an application can be vulnerable

to many application risks as shown in Table 4. When educators teach these program-

ming concepts, they should therefore pay specific attention to the impact caused by the

association, and try to keep a balance between the programming concept and its asso-

ciated secure coding practices.

4.6 STEP 6: Mapping Application Risks (ARs) to Identified Secure Coding

Practices (SPs)

After understanding the secure coding practices that must be taught to undergraduate

computing students, the researcher created mapping links that show the relationship

between application risks and secure coding practices. The purpose of the relationship

Prep
rin

t

13

links on the mapping is to demonstrate the need for, and relevance of incorporating

application risks and secure coding practices in teaching secure programming to com-

puting students. The mapping links in the content analysis results were given an impact

value (I). I is based on how many times an Application Risk (AR) was linked to a

Secure Coding Practice (SP) horizontally according to the Application Risk (AR), and

a measure of how many times a Secure Coding Practice (SP) was linked to an Appli-

cation Risk (AR) vertically according to the Secure Coding Practice (SP). I can also be

seen as a way of prioritising important links that need special attention. Table 6 shows

the mapping links between the OWASP list of Top 10 Application Risks and the related

Secure Coding Practices Checklist.

Table 6. Mapping Identified Application Risks to Secure Coding Practices.

The mapping links between application risks and secure coding practices shows a direct

relationship between application risks and secure coding practices. An application risk

can have a number of secure coding practices that address it, and a secure coding prac-

tice can be applied to mitigate a number of application risks. An application risk that

links with many secure coding practices receives a high impact value (I), where (I) of

4 and above would mean that the link needs special attention. Therefore, educators must

not teach application risks and secure coding practices in isolation, as the secure coding

practices in Table 2 are used to prevent or mitigate the application risks in Table 1.Bro-

ken Authentication (AR2) in the mapping shown in Table 6, links with many secure

coding practices, and thus it receives a high impact value (I) of 8. Software applications

without a properly structured authentication mechanism can be vulnerable to privilege

escalation [5, 29]. The application risk Broken Authentication (AR2) and secure coding

practice Authentication and Password Management (SP3), provide an example that can

be used to teach students not to hard-code passwords, nor leave plaintext passwords in

the config files, as that can enable attackers to bypass access controls [5]. Error Han-

dling and Logging (SP7) has received a high impact value (I) of 7, which shows the

importance that error handling and logging has to avoiding application risks such as

Prep
rin

t

14

Sensitive Data Exposure (AR3). When error handling and logging is properly used in

an application, default errors that show critical information such as server details are

avoided by showing a custom error created by the programmer [5, 27]. To avoid Secu-

rity Misconfiguration (AR6), students must be taught to avoid insecure default config-

urations, and verbose error messages containing sensitive information. For ASP.Net

applications, students can avoid Security Misconfiguration (AR6) by being taught to

properly configure the .config file in the solution. A typical example of configuring the

.config file would be to enable customErrors, so that default error messages will not

be displayed.

5 Discussion and Conclusion

For graduate software developers to be competent in secure software development, they

should be equipped with relevant and necessary secure programming knowledge in the

undergraduate level. Literature review shows that secure coding practices and tech-

niques do exist in the current body of knowledge [7, 21, 22]. However, these secure

coding practices and techniques are rarely used as fundamental components of compu-

ting curricula, but are rather treated as secondary topics which are briefly discussed in

programming courses [7].

Universities are responsible for educating undergraduate computing students, where

fundamentals of computing are introduced to students and guided through practical

classes in the computer laboratories [14]. Although many universities teach program-

ming, often very little attention is given to secure programming, resulting in incompe-

tent undergraduate software developers. The university Prospectus and Learner and

Lecturer Guides are key to teaching undergraduate students, as these documents show

what the student will know and be able to apply after completion of the course.

Computing curricula reports such as the various ACM curricula guidelines recom-

mend the teaching of secure programming in undergraduate computing courses. How-

ever, these guidelines do not provide adequate guidance on how secure programming

can be integrated into the curriculum to enable a graduate software developer to be

competent in secure programming.

The step-by-step approach proposed by this paper can be used in various levels of

preparing a computing curriculum. The approach can be used in setting up the Prospec-

tus and Learner and Lecturer Guides, to ensure that relevant application risks and secure

coding practices are considered in secure programming education, and the actual teach-

ing of the secure coding practices and application risks to students. The steps proposed

by this paper go hand-in-hand and cannot be addressed in isolation, as isolating these

steps may lead to vulnerabilities that can affect the application.

In addition, the mappings presented in this paper show the relationship between the

programming concepts taught to undergraduate students, to the identified application

risks and secure coding practices. The mappings serve as a guide for how the applica-

tion risks can be addressed by considering secure coding practices relating to basic pro-

gramming concepts. Secure coding practices must be explicitly incorporated in the un-

dergraduate computing curricula, to ensure that students will be competent in secure

software development.

Prep
rin

t

15

This paper proposes that secure coding practices be integrated throughout the under-

graduate computing curriculum, from the first year of study, throughout to the final

year of study. This approach would not only impact the competence of graduate soft-

ware developers, but it would positively influence the security of software applications

developed by these graduate software developers.

The main limitation of this paper is that the approach and mappings suggested in this

paper have not yet been formally validated. This will form part of future research as

well as the actual implementation of this approach at various universities across South

Africa.

Acknowledgements

The financial assistance of the National Research Foundation (NRF), Nelson Mandela

University Research Capacity Development (RCD) and BankSETA towards this re-

search is hereby acknowledged. Opinions expressed and conclusions arrived at, are

those of the authors, and are not necessarily to be attributed to the funders.

References

1. Hoekstra, M., Lal, R., Pappachan, P., Phegade, V., Del Cuvillo, J.: Using innovative

instructions to create trustworthy software solutions. Proc. 2nd Int. Work. Hardw.

Archit. Support Secur. Priv. - HASP ’13, pp. 1–1. ACM, New York, NY, USA (2013).

2. Uskov, A. V.: Hands-on teaching of software and web applications security. Proc. 3rd

Interdiscip. Eng. Des. Educ. Conf. IEDEC 2013, pp. 71–78. IEEE, Santa Clara, CA,

USA (2013).

3. Mumtaz, H., Alshayeb, M., Mahmood, S., Niazi, M.: An empirical study to improve

software security through the application of code refactoring. Inf. Softw. Technol., pp.

112–125 (2018).

4. Metalidou, E., Marinagi, C., Trivellas, P., Eberhagen, N., Skourlas, C., Giannakopoulos,

G.: The Human Factor of Information Security: Unintentional Damage Perspective.

Procedia - Soc. Behav. Sci., pp. 424–428 (2014).

5. Veracode: State of Software Security 2017. https://www.veracode.com/state-software-

secutity-2017, last accessed 2019/02/20.

6. Rajlich, V.: Teaching developer skills in the first software engineering course. Proc. -

Int. Conf. Softw. Eng., pp. 1109–1116. IEEE, San Francisco, CA, USA (2013).

7. Whitney, M., Lipford, H. R., Chu, B., Thomas, T.: Embedding Secure Coding

Instruction Into the IDE: Complementing Early and Intermediate CS Courses With

ESIDE. J. Educ. Comput. Res., 56(3), pp. 415–438 (2018).

8. Burley, D., Bishop, M., Buck, S., Ekstrom, J., Futcher, L., Gibson, D.: Joint Task Force

on Cybersecurity Education. 1(1) November (2017).

9. Mabece, T., Futcher, L., Thomson, K.-L.: Towards using pervasive information security

education to influence information security behaviour in undergraduate computing

graduates. CONF-IRM 2016 Proc. Int., p. 14 (2016).

10. Lunt, B. M., Ekstrom, J. J., Lawson, E.: Curriculum guidelines for undergraduate degree

programs in Information Technology. pp. 1–139 (2008).

11. Ramachandran, M.: Software security require ments management as an emerging cloud

Prep
rin

t

16

computing service. Int. J. Inf. Manage., 36(4), pp. 580–590 (2016).

12. Perrone, L. F., Aburdene, M., Meng, X.: Approaches to undergraduate instruction in

computer security. 2005 ASEE Annu. Conf. Expo. Chang. Landsc. Eng. Technol. Educ.

a Glob. World, pp. 651–663 (2005).

13. Cotler, J., College, S., Mathews, L., College, S., Hunsinger, S.: Information Systems

Applied Research 2015 AITP Education Special Interest Group (EDSIG) Board of

Directors. J. Inf. Syst. Appl. Res., 8(1), pp. 1–65 (2015).

14. The Joint Task Force on Computing Curricula IEEE Computer Society Association for

Computing Machinery, Information Technology Curricula 2017: Curriculum

Guidelines for Baccalaureate Degree Programs in Information Technology (2017).

15. Aytes, K., Conolly, T.: A research model for investigating human behaviour related to

computer security. Proc. 9th Am. Conf. Inf. Syst., pp. 1–6. AMCIS, Tampa, FL, USA

(2003).

16. Buoncristiani, M., Buoncristiani, P.: How People Learn (2014).

17. Barr, R. B., Tagg, J.: From Teaching to Learning - A New Paradigm For Undergraduate

Education. Chang. Mag. High. Learn., 27(6), pp. 12–26 (2012).

18. Van Niekerk, J. F., Von Solms, R.: Information security culture: A management

perspective. Comput. Secur., 29(4), pp. 476–486 (2010).

19. Mcgraw, G.: Software security. IEEE Secur. Priv. Mag., 2(2), pp. 80–83 (2004).

20. Aziz, N. A., Shamsuddin, S. N. Z., Hassan, N. A.: Inculcating Secure Coding for

beginners. 2016 Int. Conf. Informatics Comput. ICIC 2016, Icic, pp. 164–168. IEEE,

Mataram, Indonesia (2017).

21. OWASP: OWASP Top 10 - 2017 The Ten Most Critical Web Application Security

Risks. Owasp, p. 24 (2017).

22. Singhal, A., Winograd, T., Scarfone, K.: Guide to Secure Web Services. NIST Spec.

Publ. 800-95, 95(1), pp 1-128 (2007).

23. Bishop, M., Frincke, D. A.: Teaching secure programming. IEEE Secur. Priv., 3(5), pp.

54–56 (2005).

24. Department of Education: Department of Education Higher Education Act , 1997 :

Regulations for the Registration of Department of Education (1997).

25. Department of Education: Creating Comprehensive Universities In South Africa : A

Concept Document. Department of Education, pp. 1–40 (2004).

26. Krippendorff, K.: Content Analysis An Introduction to its Methodology, 31(6) (1985).

27. OWASP: OWASP Secure Coding Practices Checklist,

https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_Checklist, last

accessed 2019/05/24.

28. Christey, S. and Martin, B.: CWE - 2011 CWE/SANS Top 25 Most Dangerous Software

Errors. SANS Institute. p. 41 (2011).

29. OWASP: OWASP Secure Coding Practices Quick Reference Guide, pp. 1–17 (2010).

30. Bishop, M. et al.: Secure Programming Clinic: Concept Map,

http://spc.cs.ucdavis.edu/index.php/conceptmap, last accessed 2019/02/20.

31. An, Z. and Liu, H.: Realization of buffer overflow. Proc. - 2010 Int. Forum Inf. Technol.

Appl. IFITA 2010, 1(1) pp. 347–349 (2010)

https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_Checklist

